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An autopilot can be used to provide precise
control to meet the demanding requirements of flight
research maneuvers with high-performance aircraft.
This paper presents the development of control laws
for a flight test maneuver autopiliot for an F-15
aircraft. A linear quadratic regulator approach is
used to develop the control laws within the context
of flight test maneuver requirements by treating the
maneuver as a finite time tracking problem with regu-
lation of state rates. Results are presented to show
the effectiveness of the controller in insuring accept-
able aircraft performance during a maneuver.

Introduction

Conventional piloting techniques are often inade-
quate to meet the demanding requirements of flight
research maneuvers with high-performance aircraft.
These maneuvers frequently require precise control of
onset rates in extreme flight conditions. Thus, the
pilot may be trying to control an aircraft at high
angles of attack and high g's while attempting to
increase normal acceleration at a prescribed rate
through a maneuver specified to the very limits of the
accuracy of the cockpit instruments.

A new flight test technique to aid the pilot
during these maneuvers was developed at the Dryden
Flight Research Facility of the NASA Ames Research

Center (Ames-Dryden).l The essence of this tech-
nique is the application of an autopilot to provide
precise control during the required flight test
maneuvers. The flight test maneuver autopilot (FTMAP)
is designed to provide precise, repeatable control of
a high-performance aircraft during certain prescribed
maneuvers so that a large quantity of data can be
obtained in a minimum of flight time.

The FTMAP can be used for various maneuvers, such
as straight-and-level flight, level accelerations and
decelerations, pushover pullups, excess-thrust windup
turns, and thrust-limited turns. Each of these maneu-
vers comprise tracking certain states of the aircraft,
holding certain states within prescribed values, and
maintaining constraints on the derivatives of the
states. For example, an excess-thrust windup turn is
performed at constant altitude and Mach number with
the angle of attack increasing at a specified rate to
the final angle of attack.

This paper presents the development of the FTMAP
control laws within the context of flight test maneu-
ver requirements. The FTMAP design represents a well-
defined and completely specified problem against which

*The work presented here was supported in part by a
National Research Council Fellowship.

various design methodologies can be tested. Not only
does this problem represent a real-world situation,
but the FTMAP control law design problem also forces
consideration of a significant design issue in air-
craft controls — controlling a plant that changes as
vehicle attitude or flight conditions change.

Problem Formulation

The functional capability of the FTMAP is derived
from its ability to generate control laws required
to execute a maneuver. The FTMAP control laws are
developed using the Ames-Dryden detailed nonlinear
aerodynamic model of the F-15 aircraft. The model
is linearized by trimming the aircraft at the desired
flight condition and deriving linear models by numeri-
cal perturbation. The linear model may be represented
in the standard state equation form as

x = Ax + Bu (1)

y = Hx (2)

where the states x and inputs u represent perturbation

around nominal trim values X and u, respectively.
Also, y is the output and A, B, and H are matrices of
appropriate dimensions.

In order to perform a certain maneuver, a control
algorithm is developed to take the aircraft from a
certain specified initial trim state to another spec-
ified state. The FTMAP control law design can be
formulated as an optimal tracking problem, in which
it is desired to track a constant final state in
finite time. It is also necessary to regulate the
state rate in certain maneuvers.

Multivariable linear quadratic control theory is
a powerful tool for the development of the flight test
controller. The control design problem selects inputs
u to drive the perturbation states x to the desired
final state by optimizing a quadratic performance
index. Because control of the derivatives of states
is also desired, additional terms are added to the
performance index and the resultant control laws are
computed directly from the performance index.

Control Law Synthesis

An optimal tracking problem may be formulated as

follows. Reiterating Eqs. 1 and 2, the system is
given as

x = Ax + Bu

y = Hx



It is desired to minimize a performance index of the

form

where e(t) is equal to z(t) - y(t), z(t) is the desired
state to be tracked and is a known function, and Q and

.
J =172 JZ te(t)Toe(t) + u(t)TRu(t)1 dt  (3)

R are weighting matrices.

To track a constant final state z and also to be

able to regulate the derivatives of the states, an

additional term is added to the performance index to

be minimized.
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is the desired constant final state, and
the desired state rate.

The performance index may be written as

(4)

Lagrange multiplier, the optimal control u* that will
derive the aircraft to the desired terminal condition

is
u* = (R + B'E"sEB) !
+ 8TETseax - BTe
= Ry et
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and K and g are obtained from the solution of the
following equations using appropriate terminal con-
ditions.2 Hence,
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However, the optimal control u* need not be
derived by a finite time formulation but may be ob-

(5)

(6)
(7)

tained by employing steady-state control laws. This
is equivalent to assuming that the z(T) persists as a

constant value for a long period. With the

foregoing

assumption, K is a constant matrix that satisfies the
algebraic Riccati equation and g(t) = 0. Thus, the

simplified control law becomes
u*(t) = -Cix + Coz + C3E,
where

cp = Ry lBTk + Ry lgTET

SEA
c2 = Ry~ 1877 1HTg

e+ 8T "sE)

Application of Control Laws

(8)

The linearized equations of motion of an F-15

aircraft are given by Eq. 1

x = Ax + Bu

where

rvy = velocity, ft/sec
a| = angle of attack, deg
qg| = pitch rate, deg/sec
8| = pitch angle, deg

x =|h| = altitude, ft
B| = sideslip angle, deg
pl| = roll rate, deg/sec
ri{ = yaw rate, deg/sec
_¢J = roll angle, deg
[65]1 = aileron deflection

u = |Se| = elevator deflection
8r| = rudder deflection
[87] = throttle displacement

For a flight condition corresponding to

an alti-

tude of 20,000 ft and Mach 0.8, the matrices A and B

are as follows. For matrix A, columns 1 to

[-0.0108 24,1966 0.0000 -32.1129
-0.0001 -1.0942 1.0000 0.0001
-0.0001 -3.2862  -2.1922 0.0009

0.0000 0.0000 1.0000 0.0000
0.0000 -829.5390 0.0000 829.5390
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
_ 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 -0.2337 0.0358 -0.9994
0.0000 -40.0103 -2.1420 1.2406
0.0000 9.0098 -0.0340 -0.6040
0.0000 0.0000 1.0000 0.0358

Matrix B is given by

9 are

0.00007]
0.0000
0.0000
0.0000
0.0000
0.0387
0.0000
0.0000
0.0000_]




[~ 0.0000 -1.0734 0.0000 0.37927]

0.0000 -0.1504 0.0000  0.0000
0.0000 -16.1223 0.0000 0.0000
0.0000 0.0000 0.0000  0.0000
0.0000 0.0000 0.0000 0.0000
-0.0022 0.0000 -0.0388 0.0000
13.5934 0.0000 -1.4674 0.0000
0.1488 0.0000 -4.5577 0.0000

L. 0.0000 0.0000 0.0000 0.0000J

Three sets of trajectories show the results of the
application of developed control Taws to the aircraft.
In the first case, it is necessary to hold the aircraft
at trim conditions of the specified flight condition,
The flight condition corresponds to an altitude of
20,000 ft and a Mach number of 0.8. The aircraft is
in straight-and-level flight. The control law design
is intended to maintain the aircraft at the specified
altitude and velocity.

For this first case, figures 1 and 2 show the
variation in velocity and altitude, respectively, when
the aircraft is required to be flown straight and
Tevel at a given altitude and Mach number. Figures 3
and 4 show the corresponding variations in the eleva-
tor deflection and throttle displacement, respectively.
The aircraft is held to the trim values by the con-
troller designed.

In the second case, the flight condition corre-
sponds to an altitude of 20,000 ft and the initial
Mach number is 0.5. The aircraft is to be accelerated
to Mach 0.8 while it is held at the specified alti-
tude. Because of the variation of the parameters
while the plane accelerates, the feedback gains were
updated midway through the maneuver. Figures 5 and 6
show the variations of velocity and altitude as the
aircraft undergoes the maneuver. The response was not
considered satisfactory because of spikes observed at
the time of update of gains. Figures 7 and 8 show the
variations of the velocity and altitude for the same
maneuver when the aircraft is initialized to the
flight condition corresponding to Mach 0.8.

In the third case, the maneuver that was per-
formed was the same as in the second case, except
that a constraint was placed on the state rate. It
is desired to maintain the Mach rate at 0.005 Mach
per sec. Figures 9 and 10 show the variations in the
velocity and altitude as the aircraft goes through the
maneuver. The response obtained in this third case
was considered satisfactory.

Concluding Remarks

This paper presents a synthesis technique that
is applicable for control of an aircraft undergoing a
specified maneuver. It assumes that a given maneuver
can be modeled as a state trajectory to be tracked.
The technique that is described uses the optimal
regulator approach to the trajectory control problem.
Results are presented for trajectory tracking for the
aircraft undergoing altitude-hold level acceleration.

For more complex maneuvers, it is necessary to
generate a set of state and control histories to
serve as commands for the flight test maneuver
autopilot (FTMAP), using a data base that consists
of trim conditions. The maneuver model can be
divided into a smaller set of state trajectories
for suitable updating of aircraft parameters and
gain scheduling. The development has the potential
of simultaneously controlling multiple parameters
to demanding tolerances.
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Fig. 3 Variations in elevator deflection with
time for straight-and-level flight comditionm of
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Fig. § Variations in velocity with time for
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tial Mach 0.5 accelerated to Mach 0.8 (gains
updated midway through maneuver)
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Mach 0.5 accelerated to Mach 0.8 (gains up-
dated midway through manewver)



850 —
800
750

Velocity, 700 I—

ftisec 650

600

550

so b1 11111
0 20 40 60 80 100 120 140 160
Time, sec

Fig. 7 Variations in velocity with time with
aircraft parameters initialised to Mach 0.8 at
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